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Abstract—The measurement of humidity and moisture control are 
some of the prime factors in the case of industrial processes and 
environmental studies. Thus, the fabrication of highly sensitive 
humidity sensor is of keen interest for many researchers. Humidity 
sensors are widely used in semiconductor, pharmaceutical, health 
care, automobile, textile, paper and agriculture industries. 
Traditional humidity sensors are fabricated by using alumina, 
ceramics, metal oxides and polymers. Of all available sensors, 
resistive type humidity sensors are widely in demand due to their low 
cost and easy sensing mechanism. Sensors fabricated by using 
polymers have been reported good stability whereas sensors based 
on metal oxides have been reported good sensitivity. This has 
motivated us in studying the behavior and characteristics of sensors 
based on Polyaniline (polymer) and Tin oxide (metal oxide). In 
present study, we synthesized Sn-PANI composite and characterized 
it using FTIR, XRD and SEM techniques as displayed. Sn-PANI 
composite is one such proposed sensor that has appreciable response 
to humidity. The blending of SnO2 with PANI has greatly increased 
the sensitivity towards humidity as compared to SnO2 and PANI 
sensors alone.  

1. INTRODUCTION 

For the last several yearssensors are extensively used in 
various fields to detect the existence of many pollutant gases 
and humidity to avoid toxic effects on mankind. Sensors 
possess wide range of application in various aspects of modern 
day technologies.As reported, humidity plays a major role in 
every part of the earth and its adjoining ambiance. To have a 
desirable surrounding atmosphere for manhood, it is essential 
to monitor, detect and control the ambient humidity under 
different conditions [1].The measurement of humidity and 
moisture control are some of the leading factors in the case of 
manufacturingpractices also. Humidity sensors are 
comprehensively used in different industries such as 
semiconductor, pharmacological, health care, automobile, 
textile, paper and agronomy industries [2]. 

A selection of material for a good sensor is based on 1. 
Sensitivity: the minimum volume of concentration that can be 
detected, 2. Response time: the time taken by a sensor to 
respond to an existence of moisture, 3. Recovery time: the 

time taken by sensor to get ready for next sensing cycle, 4. 
Fabricationcost and 5. Shelf life [3]. 

Several attempts were made to synthesize sensor satisfying 
above parameters with the help of metal oxides, polymers, 
ceramics and alumina [4]. These materials show fluctuations 
in their physical and electrical properties when exposed to the 
different atmospheric humidity circumstances of the adjacent 
environment. These changes are mainly due to the adsorption 
or desorption of water molecule on the surface of the sensor 
material [5]. Humidity sensors based on polymers and metal 
oxides are resistive type sensors. Resistive type sensors are the 
sensors, which shows change in surface resistance when 
exposed to humidity. These sensors are of easy mechanism 
and cost effective. In case of metal oxide sensors, the surface 
metal oxides aregetting covered with hydroxyl groups when 
exposed to humid atmospheresthus hydrogen-bonding forms 
to further adsorb water molecules [6]. In the first stage of the 
interaction a few water vapour molecules are chemically 
adsorbed (chemisorption) on surface As a second stage, after 
chemical completion of the first layer, subsequent water 
vapour layers are physically adsorbed (physisorption) on the 
first formed hydroxyl layer. This leads to the hydroxyl 
multilayer formation on the surface of the metal oxide. With 
this hydroxyl groups on surface of the sensor results in the 
increase in conductivity. In case of polymer based humidity 
sensors, sensing principle is same as metal oxide humidity 
sensors [7].  

Tin oxide (SnO2) has been recognized as an attractive material 
with excellent optical properties, chemical durability and 
transparent conductivity. Due to these properties SnO2 is 
widely used for monitoring humidity. However, there are 
some limitations of SnO2 [8]. Polyaniline attracted more 
researchers due to its high sensitivity, short response time, low 
cost of fabrication, simple structure and low energy 
consumption. However, PANI shows some drawbacks also, 
such as long-time instability and irreversibility [9].To 
overcome drawbacks of SnO2 and PANI for humidity sensing 
application, we blended SnO2with PANI to form composite 
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Sn-PANI. These were prepared by sol-gel method and 
chemical oxidative method respectively. Sample was 
characterized using X-ray diffraction (XRD), Scanning 
Electron Microscope (SEM) and FourierTransform Infrared 
Spectroscopy (FTIR) techniques. The humidity sensitive 
characteristics were investigated by recording their electrical 
responses when exposed to humidity with the help of simple 
laboratory made set up. 

2. METHODS AND MATERIALS  

Polyaniline Synthesis (PANI) 

Polyaniline (PANI) was synthesized by using chemical 
oxidation method. An appropriate amount of double distilled 
Aniline and water were mixed together. 1M H2SO4 as a 
dopant was added to the above solution. Ammonium 
persulphate (APS) as an oxidizing agent was also added drop 
by drop to this solution till polymerization took place. The 
whole procedure was carried out under constant magnetic 
stirring for 6 hours at low temperature, as this reaction was 
highly exothermic. The precipitate was filtered, washed 
several times and then dried at 60° C for 12 hours to obtain a 
dark green powder. 

Tin Oxide Synthesis (SnO2) 

Tin Oxide (SnO2) was synthesized by sol-gel reaction. An 
appropriate amount of Tin chloride (SnCl2.2H2O) was added 
to distilled water and kept for constant stirring at 450 rpm. 1M 
NaOH was added to above solution drop by drop to adjust pH 
in the range 8-9 on pH scale. Once pH got adjusted solution 
again stirred for 2 hours at 60° C. It was observed that colour 
of solution changed from white to grey in this process. The 
precipitate was then filtered, washed several times and then 
air-dried. The sample was sintered in a furnace at 400°C for 6 
hours. 

Sn-PANI Composite 

To form composite Sn-PANI, SnO2 powder was blended with 
PANI with different concentrations by simple grinding 
process. For better results of characterization the sample was 
shaped in pellet form. The pellets were formed by applying a 
pressure of 6 tones for 5 minutes. The nature of bonding, 
structural and surface morphology of the PANI, SnO2 and 
composite were analyzed by FTIR, XRD and SEM 
respectively. The sensing characteristic was examined by 
monitoring the changes in resistance using Keithley source 
meter. 

3. RESULTS AND DISCUSSIONS 

In order to study the structure and grain size of synthesized 
material, we characterized the material by XRD technique. 
The XRD patterns for PANI, SnO2 and Sn-PANI 
nanocomposite are shown in Fig. 1, 2 and 3 respectively. For 
PANI, The characteristic peak appeared at 26° corresponding 
to (200) crystal plane. On comparing the observed XRD peaks 

for SnO2 and Sn-PANI composite, it can be seen that the 
nanocrystalline SnO2 peaks are observed and matched with 
those peaks along (1 1 0), (1 0 1), (2 0 0), (2 1 1), (2 2 0), (3 1 
0) and (2 0 2) having primitive tetragonal structure (JCPDS 
DATA CARD 41-1445). 

 

Fig. 1: XRD of PANI 

 

Fig. 2: XRD of SnO2 

 

Fig. 3: XRD of Sn-PANI 
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